Schematic | Circuit guide | Manual Wiring diagram | Electronic
Showing posts with label led. Show all posts
Showing posts with label led. Show all posts

LED Brake Rear Light Specifically for motorcycles Circuit diagram

Posted by Unknown Tuesday, October 1, 2013 0 comments
LEDs are used more and more in motor vehicles, replacing the standard incandescent lamps because they are more energy efficient and have a much longer life expectancy. In this article we describe a simple LED tail light that has been specifically designed for motorcycles, scooters and mopeds. There appears to be a significant need among motorcyclists for rear lights with LEDs, as evidenced by the many messages on this topic that turn up in various internet forums. The circuits that accompany these messages are often very rudimentary and therefore not very robust.

Mini project:


When designing an LED light for a motorcycle the following criteria need to be considered:

• Large variations of on-board voltage, this has a significant influence on light intensity.
• The circuit has to be (mechanically) robust.
• High light output is required (visibility = safety).
• Clearly visible difference in light intensity between rear light and brake light function.

After reading some of the literature concerning the use of LEDs in motor vehicles, it appears that the most common reason why LEDs still fail is the incorrect and/or insufficient use of series resistors.
In poorly implemented circuits there are often a number of LEDs connected in parallel which are all fed from a single series resistor. Because of small variations between LEDs, one LED can quickly give up the ghost. This causes an increase in current through the remaining LEDs and can easily lead to a domino effect, ultimately resulting in the failure of the entire circuit.With high-intensity LEDs, a small variation in current is immediately obvious as a large variation in light output.

This has to be taken into account when designing a circuit. This is important because when the engine rev speed goes up, the on-board voltage increases significantly. It would appear that you were braking when you actually opened the throttle instead.LEDs need mainly a constant current.That is why most circuits choose to drive LEDs from a constant-current source.

Circuit

This circuit has been designed to operate both as a motorcycle rear light and as a brake light. This requires two different currents. Because the voltages measured on the author’s motorcycle varied from 10.5 to 15 V and because two different currents are required for the total of 17 high-intensity LEDs it was not possible to use only one constant-current source.

Circuit diagram:

The idea was to turn the strongly varying DC voltage into a nice constant voltage first and then turn that into a constant current through a number of series resistors. The problem that is highlighted in many forums is the fact that the signal for the brake light is a positive voltage. It would require a lot of work on the motorcycle to change this. That is why the decision was made for a de sign that regulates the voltage on the chassis side, with the aid of a negative voltage regulator, a 7908. The disadvantage of this arrangement is that an additional chassis wire is required; normally the minus side of the lamps is directly connected to the chassis of the motorcycle.

However, the advantage is that both the + from the rear light as well as the + from the brake light can be directly connected to the LEDs.The ‘lamp’ con sists of a centre part with nine round, red,5-mm LEDs (HLMP EG08 Y200) wi th positioned around that eight oval ,r e d L E D s HLMP AD61 of 5 mm.The round LEDs D12 through D20 which have qui te a narrow radi ation angle are connected in series in sets of 3. Three of the se ‘strings’ are connected in parallel and each string has its own series resistor.

The oval LEDs D4 to D11 which have a wide radiation pattern are connected with two in series, so there are therefore four strings connected in parallel. These ensure with their wide radiation angle of 110 degrees that the rear/brake-light is also clearly visible from the side.The oval and round strings are connected to the brake contact via diodes. When the brake is operated all the strings are presented with the +12V from the battery via the series resistors. The light intensity therefore depends on the current that flows as a result of the series resistor (and the voltage drop across the diodes).

When the brake is not operated, the LEDs strings are still connected to the positive voltage of the battery, but this time via additional resistors R1 and R2.Because of the value of these resistors,the current is much lower and therefore also the light intensity. The intensity of the brake light can be adjusted using the series resistors (R3 to R9) in each of the individual strings,the brightness of the rear light is selected with the additional series resistors R1 and R2.Diode D1 has been added to protect the circuit from reverse connection of the power supply voltage.Electrolytic capacitors finally provide filtering for the fairly large varying,and not so clean, voltage.

The circuit was built into a silver coloured tube by the author. The electronics are mounted on two pieces of prototyping board, one behind the other,in the tube. The front (visible) PCB holds the LEDs and the series resistors. The LEDs are arranged as indicated next to the schematic. The 9 round LEDs are mounted in the middle of the rear light in a square pattern. The oval LEDs are mounted in a circle around the square.

The second PCB contains the remaining parts and the regulator.You can modify the circuit to your heart’s content by adding more strings, each fitted with its own diode and two resistors (a series resistor such as R3) and a resistor to +12 V (such as R1).The total current (when braking), must not exceed the maximum rating of the voltage regulator, this amounts to 1 A.

Author : Marcel Ulrich Copyright : elektor

13 Color LED Rainbow Schematic

Posted by Unknown Thursday, September 5, 2013 0 comments
Only a few years ago, the choice of LEDs was limited to IR, red, yellow, and green. The LED manufacturers have been busy extending the spectrum, and filling in the gaps. The latest generation of organic LEDs (OLEDs) has added some dazzling new colors to the spectrum. This circuit uses a set of 13 differently colored LEDs to generate a full color spectrum. The photo does not fully represent the colors generated due to camera limitations. The real-world display is very eye-catching. If you want to "trick out" your PC, this circuit is for you. Forget about those boring blue PC light displays.

13 Color LED Rainbow Circuit Diagram:


13 Color LED Rainbow

Specifications:
  • Operating Voltage: 6-12V DC
  • Operating Current: 145ma at 12V DC
Theory:
The LM2940T-5.0 low dropout voltage regulator converts the 6-12V DC input power to regulated 5 Volts. It was chosen over a standard 7805 regulator so that the circuit could maintain regulation while operating on a 6V battery. The 1N4001 diode protects the circuit from reverse polarity, if a battery or power supply capable of generating over 1 amp is used, a 1 amp fuse should be installed between the supply and the circuit. The 5 Volts is used to drive each of the LEDs through individual current limiting resistors.

The resistor values were determined experimentally for equal brightness. Values are given as examples only, different sources of LEDs will require different resistor values. Resistor selection turns out to be the most difficult part of the circuits construction. A 100 ohm resistor in series with a 1K pot could be used in place of each resistor if individual brightness adjustments are desired. The table below lists the LED colors and wavelengths.

LED Color Wavelength Description
Deep Red 700nm ---------
Red 660nm traditional red
Orange Red 635nm "high efficiency" red
Orange 623nm also called red orange
Amber 594nm ---------
Yellow 588nm & traditional yellow
Yellow Green 567nm traditional green
True Green 523mn --------
Cyan 501nm verde green, blue green
Aqua 495?nm ---------
Deep Blue 470nm ultra blue
Powder Blue 430nm first generation "powder blue"
Violet 410nm ---------

Construction:
The circuit was built on a prototype perforated board with printed solder pads. The circuitry is hand-wired on the back side of the board. Care should be taken when soldering to the LEDs, a clip-on heat sink should be used while soldering the leads. Care should be taken to avoid zapping the LEDs on the violet side of the spectrum, they are sensitive to static electricity. The circuit board can be mounted on a piece of white hardboard, the white paint reflects the colors nicely.

Use:
Apply power to the circuit and enjoy the colorful glow. Do not stare directly into the array at close range for extended periods, some of the LEDs are extremely bright.

Taking The Circuit Further:
The spectrum could be extended on both the IR and UV sides. A brief scan through the Mouser catalog indicates the availability of these IR wavelengths: 940nm 880nm, 875nm, 870nm, 850nm. UV LEDs at 400nm, 395nm and 380nm are also available. There are also many LED colors available with wavelengths between the 13 colors shown, the colors selected were chosen for an evenly spaced color spectrum.

13 Color LED Rainbow

An open-collector LED driver circuit could be connected to the negative LED leads for computer control.The circuit could be used in conjunction with a photo detector for characterizing optical filter curves. Typically, the photo detector output is sent to a logarithmic converter, the log-ratio of the direct light versus the filtered light characterizes the attenuation at a given wavelength.

Parts:
Most of the LEDs were purchased from Digi-Key, Jameco, and Mouser. All of the parts were T1-3/4 size, clear packages were used wherever possible. LEDs from different manufacturers may have different focus characteristics. All of the resistors are 1/4 Watt parts. LED part numbers are not available, the rainbow was assembled from parts that were accumulated over several years. Beware that different LED manufacturers use different names for their colors, the wavelength is the best indicator of the color. The Aqua LED is the most difficult part to find, All Electronics carries them, although the wavelength is unspecified.
 

Cheap LED flashing circuit

Posted by Unknown Sunday, August 11, 2013 0 comments
This is an simple and cheap LED flashing circuit.This circuit work for at lease 10V-13V power supply.

Data sheet 2N2222 which is equivalent of KSP2222. 

LED Flasher circuit Diagram

Posted by Unknown Tuesday, May 28, 2013 0 comments
This is Multi vibrator circuit diagram H ere you can attach up to 4 LEDs.I suppose this circuit will be so useful for all.You can use this circuit to decorate your Wesak Lanterns



Note
# This circuit can be operated with 3 to 9V

CONSTANT BRIGNESS LED AND MUTE CONTROL ELECTRONIC DIAGRAM

Posted by Unknown Saturday, April 13, 2013 0 comments

CONSTANT BRIGNESS LED AND MUTE CONTROL ELECTRONIC DIAGRAM

The output power of the modules are approximately 220W to 250W into 8? and 350W to 400W into 4?. Complete documentation for the amplifier modules can be found in the documents listed below. AN-1850 LME49830TB Ultra-High Fidelity, High-Power Amplifier Reference Design Although the power supply design is specific to the amplifier modules the concepts and circuit design may be used for any power supply purpose. The power supply is an unregulated design with an option to allow connection to either 120V or 240V mains. The design uses toroidal transformers, a fully integrated bridge, and various rail capacitors for ripple voltage reduction, noise suppression, and to act as high current reservoirs. Additional circuitry to control inrush current on power up and power up/ down Mute control are also included.

The topics discussed inside the application note including the introduction, overview, schematic and design, power supply, additional circuit, inrush current control, mute control, constant brightness LED circuit, summary, and many more.

LED Photo Sensor Circuit

Posted by Unknown Saturday, April 6, 2013 0 comments

This is a circuit that takes advantage of the photo-voltaic voltage of an ordinary LED. The LED voltage is buffered by a junction FET transistor and then applied to the inverting input of an op-amp with a gain of about 20. This produces a change of about 5 volts at the output from darkness to bright light. The 100K potentiometer can be set so that the output is around 7 volts in darkness and falls to about 2 volts in bright light.

Simple LED flasher circuit using NE555 timer IC

Posted by Unknown Friday, April 5, 2013 0 comments
This circuit consumes more power, but its advantage is when you need a variable flash rate, like for strobe circuits. You can actually use this circuit as a remote control for strobes that have a remote input. Of course, it has many other applications besides strobes.

Simple LED flasher circuit using NE555 timer ICLED flasher circuit
  • R1, R2, C1 and the supply voltage determine the flash rate. Using a regulated power supply will do much to insure a stable flash rate. For a variable flash rate, replace R1 with a 1 megohm pot in series with a 22k resistor.
  • The duty cycle of the circuit (the percentage of the time LED 1 is on to the time it is off during each cycle) is deterimed by the ratio of R1 to R2. If the value of R1 is low in relationship to R2, the duty cycle will be near 50 percent. If you use both LEDs, you will probably want a 50 percent duty cycle. On the other hand, if R2 is low compared to R1, the duty cycle will be less than 50 percent. This is useful to conserve battery life, or to produce a strobe type effect, when only LED1 is used.
  • The NE555 timer chip can be damaged by reverse polarity voltage being applied to it. You can make the circuit goof proof by placing a diode in series with one of the supply leads.
  • The purpose of R3 and R4 is to limit current through the LEDs to the maximum they can handle (usually 20 milliamps). You should select the value of these according to the supply voltage. 470 ohms works well with a supply voltage of 9-12 volts. You will need to reduce the value for lower supply voltages.
  • Rainbow Kits offers several kits to build the above circuit. You can also order these kits from RadioShack.com. The Radio Shack catalog numbers (and web pages) are as follows: standard kit with two 5mm red LEDs, (990-0067), kit with two red, two green and two yellow 3mm LEDs, (990-0063), kit with jumbo green LEDs, (990-0048), kit with jumbo red LEDs, (990-0049). You can also buy all the parts to build the circuit at your local Radio Shack store, including a circuit board (276-159B).
I have built a miniature strobe circuit as follows. Use a 250k pot in series with a 4.7k resistor for R1. The 4.7k resistor sets the upper flash rate limit. Use 2.2k for R2. That sets a really short duty cycle. For this circuit, you dont use LED 2 or R4. For LED 1, I used a two Radio Shack white LEDs in series and no R-3. The circuit runs on a 9 v battery.  link